Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 627(8003): 407-415, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383779

RESUMO

Neuromyelitis optica is a paradigmatic autoimmune disease of the central nervous system, in which the water-channel protein AQP4 is the target antigen1. The immunopathology in neuromyelitis optica is largely driven by autoantibodies to AQP42. However, the T cell response that is required for the generation of these anti-AQP4 antibodies is not well understood. Here we show that B cells endogenously express AQP4 in response to activation with anti-CD40 and IL-21 and are able to present their endogenous AQP4 to T cells with an AQP4-specific T cell receptor (TCR). A population of thymic B cells emulates a CD40-stimulated B cell transcriptome, including AQP4 (in mice and humans), and efficiently purges the thymic TCR repertoire of AQP4-reactive clones. Genetic ablation of Aqp4 in B cells rescues AQP4-specific TCRs despite sufficient expression of AQP4 in medullary thymic epithelial cells, and B-cell-conditional AQP4-deficient mice are fully competent to raise AQP4-specific antibodies in productive germinal-centre responses. Thus, the negative selection of AQP4-specific thymocytes is dependent on the expression and presentation of AQP4 by thymic B cells. As AQP4 is expressed in B cells in a CD40-dependent (but not AIRE-dependent) manner, we propose that thymic B cells might tolerize against a group of germinal-centre-associated antigens, including disease-relevant autoantigens such as AQP4.


Assuntos
Aquaporina 4 , Autoanticorpos , Autoantígenos , Linfócitos B , Tolerância Imunológica , Neuromielite Óptica , Animais , Humanos , Camundongos , 60533 , Aquaporina 4/deficiência , Aquaporina 4/genética , Aquaporina 4/imunologia , Aquaporina 4/metabolismo , Autoanticorpos/imunologia , Autoantígenos/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Antígenos CD40/imunologia , Centro Germinativo/citologia , Centro Germinativo/imunologia , Neuromielite Óptica/imunologia , Neuromielite Óptica/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Timo/citologia , Timo/imunologia , Células Epiteliais da Tireoide/imunologia , Células Epiteliais da Tireoide/metabolismo , Transcriptoma
2.
Proc Natl Acad Sci U S A ; 116(37): 18537-18543, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31451631

RESUMO

Deletion or Treg cell differentiation are alternative fates of autoreactive MHCII-restricted thymocytes. How these different modes of tolerance determine the size and composition of polyclonal cohorts of autoreactive T cells with shared specificity is poorly understood. We addressed how tolerance to a naturally expressed autoantigen of the central nervous system shapes the CD4 T cell repertoire. Specific cells in the tolerant peripheral repertoire either were Foxp3+ or displayed anergy hallmarks and, surprisingly, were at least as frequent as in the nontolerant repertoire. Despite this apparent lack of deletional tolerance, repertoire inventories uncovered that some T cell receptors (TCRs) were lost from the CD4 T cell pool, whereas others mediated Treg cell differentiation. The antigen responsiveness of these TCRs supported an affinity model of central tolerance. Importantly, the contribution of different diverter TCRs to the nascent thymic Treg cell population reflected their antigen reactivity rather than their frequency among precursors. This reveals a multilayered TCR hierarchy in CD4 T cell tolerance that separates deleted and diverted TCRs and assures that the Treg cell compartment is filled with cells of maximal permissive antigen reactivity.


Assuntos
Autoantígenos/imunologia , Diferenciação Celular/imunologia , Deleção Clonal/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Animais , Autoantígenos/genética , Autoantígenos/metabolismo , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Fatores de Transcrição Forkhead/metabolismo , Rearranjo Gênico do Linfócito T/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Ativação Linfocitária , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteína Proteolipídica de Mielina/genética , Proteína Proteolipídica de Mielina/imunologia , Proteína Proteolipídica de Mielina/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T Reguladores/metabolismo , Timócitos/fisiologia
3.
Front Immunol ; 8: 1511, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29170668

RESUMO

Immunization with myelin components can elicit experimental autoimmune encephalomyelitis (EAE). EAE susceptibility varies between mouse strains, depending on the antigen employed. BL/6 mice are largely resistant to EAE induction with proteolipid protein (PLP), probably a reflection of antigen-specific tolerance. However, the extent and mechanism(s) of tolerance to PLP remain unclear. Here, we identified three PLP epitopes in PLP-deficient BL/6 mice. PLP-sufficient mice did not respond against two of these, whereas tolerance was "leaky" for an epitope with weak predicted MHCII binding, and only this epitope was encephalitogenic. In TCR transgenic mice, the "EAE-susceptibility-associated" epitope was "ignored" by specific CD4 T cells, whereas the "resistance-associated" epitope induced clonal deletion and Treg induction in the thymus. Central tolerance was autoimmune regulator dependent and required expression and presentation of PLP by thymic epithelial cells (TECs). TEC-specific ablation of PLP revealed that peripheral tolerance, mediated by dendritic cells through recessive tolerance mechanisms (deletion and anergy), could largely compensate for a lack of central tolerance. However, adoptive EAE was exacerbated in mice lacking PLP in TECs, pointing toward a non-redundant role of the thymus in dominant tolerance to PLP. Our findings reveal multiple layers of tolerance to a central nervous system autoantigen that vary among epitopes and thereby specify disease susceptibility. Understanding how different modalities of tolerance apply to distinct T cell epitopes of a target in autoimmunity has implications for antigen-specific strategies to therapeutically interfere with unwanted immune reactions against self.

4.
J Exp Med ; 213(9): 1685-94, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27503071

RESUMO

Deficiency of CD83 in thymic epithelial cells (TECs) dramatically impairs thymic CD4 T cell selection. CD83 can exert cell-intrinsic and -extrinsic functions through discrete protein domains, but it remains unclear how CD83's capacity to operate through these alternative functional modules relates to its crucial role in TECs. In this study, using viral reconstitution of gene function in TECs, we found that CD83's transmembrane domain is necessary and sufficient for thymic CD4 T cell selection. Moreover, a ubiquitination-resistant MHCII variant restored CD4 T cell selection in Cd83(-/-) mice. Although during dendritic cell maturation CD83 is known to stabilize MHCII through opposing the ubiquitin ligase March1, regulation of March1 did not account for CD83's TEC-intrinsic role. Instead, we provide evidence that MHCII in cortical TECs (cTECs) is targeted by March8, an E3 ligase of as yet unknown physiological substrate specificity. Ablating March8 in Cd83(-/-) mice restored CD4 T cell development. Our results identify CD83-mediated MHCII stabilization through antagonism of March8 as a novel functional adaptation of cTECs for T cell selection. Furthermore, these findings suggest an intriguing division of labor between March1 and March8 in controlling inducible versus constitutive MHCII expression in hematopoietic antigen-presenting cells versus TECs.


Assuntos
Antígenos CD/fisiologia , Linfócitos T CD4-Positivos/imunologia , Células Epiteliais/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Imunoglobulinas/fisiologia , Glicoproteínas de Membrana/fisiologia , Timo/imunologia , Ubiquitina-Proteína Ligases/fisiologia , Animais , Células Dendríticas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Ubiquitinação
5.
Proc Natl Acad Sci U S A ; 102(8): 2874-9, 2005 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-15708970

RESUMO

TNF family members and their receptors contribute to increased gene expression for inflammatory processes and intracellular cascades leading to programmed cell death, both via activation of NF-kappaB. TNF receptor (TNFR)-associated factors (TRAFs) are cytoplasmic adaptor proteins binding to various receptors of the TNFR family. In an attempt to delineate the role of individual TRAFs, we compared NF-kappaB activation by CD40(wt) and CD40 mutants with different TRAF recruitment patterns. Recognized only recently, NF-kappaB signaling occurs at least via two different pathways. Each pathway results in nuclear translocation of two different Reldimers, the canonical p50/RelA and the noncanonical p52/RelB. Here, we show that via TRAF6, CD40 mediates only the activation of the canonical NF-kappaB pathway. Via TRAF2/5, CD40 activates both the canonical and the noncanonical NF-kappaB pathways. We observed that TRAF3 specifically blocked the NF-kappaB activation via TRAF2/5. This inhibitory effect of TRAF3 depends on the presence of an intact zinc finger domain. Paradoxically, suppression of TRAF2/5-mediated NF-kappaB activation by TRAF3 resulted in enhanced transcriptional activity of TRAF6-mediated canonical NF-kappaB emanating from CD40. We also observed that 12 TNFR family members (p75TNFR, LTbetaR, RANK, HVEM, CD40, CD30, CD27, 4-1BB, GITR, BCMA, OX40, and TACI) are each capable of activating the alternative NF-kappaB pathway and conclude that TRAF3 serves as a negative regulator of this pathway for all tested receptors.


Assuntos
NF-kappa B/antagonistas & inibidores , Receptores do Fator de Necrose Tumoral/metabolismo , Fator 2 Associado a Receptor de TNF/fisiologia , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/fisiologia , Antígenos CD40/fisiologia , Linhagem Celular , Humanos , Fator 2 Associado a Receptor de TNF/antagonistas & inibidores , Fator 3 Associado a Receptor de TNF , Fator 5 Associado a Receptor de TNF/antagonistas & inibidores , Fator 5 Associado a Receptor de TNF/fisiologia , Fator 6 Associado a Receptor de TNF/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...